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INTRODUCTION

The correlation of abnormal deep brain electrical spiking
activity with violent behavior has been demonstrated in non-
human primate studies by employing invasive methods which in-
volve the surgical implantation of electrodes and subsequent
analysis of the electrical activity recorded from the implant-
ed deep brain structures. In light of these results, a signi-
ficant advancement in the diagnosis of abnormal brain activity,
especially that deep brain activity associated with persons
exnibiting uncontrolled violent behavior, would be achieved by
the development of detection methods that are noninvasive and
therefore applicable in ordinary clinical EEG settings. This
would not only provide evidence of a possible underlying or-
ganic basis for the uncontrolled acts of violence committed by
the violent offender, but could also contribute an important
objective method for evaluating treatment effectiveness.

Our EEG research on noninvasive detection was stimulated
primarily by the initial finding of complex patterns of con-
sistent waveshape in scalp EEG which were time-locked to
spikes recorded from electrodes implanted in deep brain struc-
tures of rhesus monkeys. These studies have also shown that
such scalp correlates of deep spiking can be detected even in
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severe EEG noise backgrounds by the application of digital fil-
ters appropriately designed to minimize the effects of unwanted
EEG background activity, or by special application of cepstral
methods in cases where digital filters for pattern recognition
are not suitable because the pattern to be detected is not known
a priori. The analytical methods used are described in Saltz-
berg, 1975, 1976-a, 1976-b; Saltzberg, Lustick, & Heath, 1971;
and Saltzberg, Lustick, & Heath, Note 1.

DETECTION METHODS

The digital filtering procedures developed for detecting
scalp correlates of deep spiking were based on an analysis of
monkey and human scalp EEG data obtained from research pro-
jects where simultaneous recordings from deep brain structures
were available. Using the deep spike as the trigger for aver-
aging scalp EEG activity, it was observed that transient slow
wave activity frequently appeared in scalp activity at the
same time that a spike occurred at depth. The waveshape of
this transient activity was usually distorted by the presence
of noise; therefore averaging procedures were used to achieve
a better estimate of the transient waveshape. The power spec-
tral density of the scalp EEG background activity was also es-
timated in order to appropriately weight the spectral compo-
nents in the transient waveshape obtained by averaging. The
digital filter derived from the spectral estimates of both the
transient waveshape and the noise was employed as a detector
which looks at scalp activity and reports on the presence or
non-presence of transient patterns which match the character-
istics of the digital filter. It is interesting to note that
this coincidence of deep spiking and transient EEG slowing im-
plies that pathological sharp spiking activity at depth pro-
duces slow wave activity at the surface. This is consistent
with clinical EEG criteria which consider focal slow activity
to be an abnormal indication.

The procedure for evaluating candidate digital filters was
based on the number of spikes detected in normal subjects as
compared to the number of spikes detected in the recording of
mentally-ill subjects.2 In the initial evaluation a compari-
son was made of the incidence of spikes in normals and in vio-
lent subjects, based on a Poisson model for random spiking.

In this model the number of spikes detected over a given
length of recording is compared with the expected number de-
rived from data on normals. The normal control is used to

2The number of spikes detected is a function of detection
threshold, as described in Saltzberg, et al., 1971.



test the hypothesis that a given record represents the EEG of
a normal subject under the assumption that spikes in normal
subjects are uniformly randomly distributed. The methods of
analysis underlying these evaluation procedures depend on the
performance characteristics of the digital filter as a detec-
tor, as well as on the statistical model for evaluating the
significance of the number of spikes detected. These methods
are described in the next section.

COMPUTER IMPLEMENTATION

By virtue of our computer configuration, Fourier series
methods (rather than matrix inversion methods) were used to
implement the design and evaluation of the digital filter.
The Fourier methods for the design of the optimum filter pro-
ceed as follows:

1. Obtain (a) the complex Fourier series of the candidate
transient pattern and, (b) the power spectral density of
the signal plus noise; that is, the background EEG signal.

2, Divide the conjugate complex Fourier series of the
transient pattern by the power spectral density of the
signal plus noise.

3. Take the inverse transform of the Fourier series ob-
tained in Step 2 which gives a discretely sampled time
function that is the desired template or matched filter.

In addition to performing the above operations, the com-
puter in our laboratory is also capable of performing running
convolution. This allows continuous digital filtering of the
scalp EEG to rapidly evaluate the performance characteristics
of a candidate digital filter as a detector of abnormal tran-
sient activity. These digital filtering techniques applied to
the detection of EEG transient patterns are described in
Saltzberg, et al., 1971, and Saltzberg, et al., Note 1.

The above analytical procedures refer to the detection of
spike induced events, but it is necessary to assign some sig-
nificance to the number of events detected in terms of back-
ground activity and artifacts that produce false spike indica-
tions. The major difficulty which presents itself in physio-
logical signal studies of this type arises from the fact that
any given signal characteristic such as a spike can and usual-
ly does appear due to random background effects. The problem
then becomes one of determining whether the appearance of this
signal characteristic is due to background effects or to some



inherent quality of the EEG being analyzed. The analysis and
evaluation rationale are straightforward if it is assumed that
the time interval between spike indications is random and uni-
formly distributed due to background activity in the normal
EEG. With the foregoing assumptions, the analysis proceeds as
follows:

let pn(t) = probability of exactly n spikes occurring
in time ¢ due to EEG background activity
in normal subjects and,
pn(t+At) = probability of exactly n spikes occurring

in time t+At due to EEG background activ-
ity in normal subjects and,

A = average rate at which spikes occur in
EEGs of normal or control subjects;

then pn(t+At) = pn(t)(l-AAt) + pn_z(t)AAt . (1)

Equation (1) states (a) that the probability of exactly =
spikes occurring over t+At is equal to the probability that »
spikes occur over time t and none in Af, plus the probability
that exactly (n-1) spikes occur over time t and exactly one in
At and that the time increment At is so small that (b) the
probability of two or more spikes occurring during At is zero,
and (c) that the probability of one spike occurring in At is
AAt. Rearranging terms in Equation (1), and passing to the
limit as At -+ 0 gives:

dp_(t)
n a—
T + )\pn(t) = )xpn_l(t) . (2)

The solution of this difference-differential equation is
the Poisson probability density:
n
_ (At) e-At (3)

p. (t)

n Y]
The average or expected number of spike occurrences, 7,
during time ¢t is given by:
n=2At.
The variance of spike occurrences is also equal to At, so:

o2 =mn.
n



If the actual number of spikes detected in an EEG record
of length t is N, then to test significance we need to deter-
mine the likelihood that N or more spikes could occur in a
normal EEG record. This is given by the cumulative distribu-
tion:

© n
p(t) =3 AL
N n!
n=N
_ gz-z 08" -at
=7 - 0e)
n=0 n: (4)

1f N is large compared to n(=At), then the likelihood com-
puted from Equation (4) is small. 1If this likelihood is suf-
ficiently small, then we reject the hypothesis that an EEG
record containing N spikes in a time t is a normal record.

For several values of spike-count expectation, the level
of significance associated with this hypothesis for a record
with N spike indications can be obtained from plots of the
cumulative distribution shown in Figure 1. For example, if
the expected number of spikes over a given length of a normal
record is 6, then the plot shows that the probability of 18
spikes occurring in a normal record is 0.0001. Therefore, the
hypothesis that an EEG in which 18 spikes are detected repre-
sents a normal subject is rejected at the 0.0001 level. The
detection of 12 spikes would allow rejection of the hypothesis
at the 0.02 level.

It should be pointed out that such statistical modeling of
multiple detections over long EEG records is essential because
of the false signals, artifacts, and the many uncontrollable
sources of physiological interference that plague the evalua-
tion of EEGs. These statistical procedures follow and supple-
ment the digital filtering procedures used in designing the
detector, as outlined in the previous sections and described
in our publicatioms.
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FIGURE 1. Probability criterion for the significance of
N spike indications given m (Poisson Model). N = the actual
number of spike indications in a given EEG recording, P, = the
probability of N or more spike indications, and n = the expec-
ted number of spike indications in a normal or control record
of the same length.

SCALP DETECTION OF DEEP SPIKES IN HUMANS

We have analyzed several archival magnetic tape recordings
which were made available to our computer laboratory. These
tape recordings of human subjects represented an unique oppor-
tunity to test the digital filtering concepts developed in an-
imal studies. As part of a larger investigation of the bio-
logical basis of mental illness, magnetic tape recordings with
both surface EEG and deep brain data from two patients became
available for analysis. The data from one of the patients was
ideal for testing the concept of using the average scalp EEG



activity time-locked to the deep spikes as a basic template
for the design of a digital filter detector. The application
of digital filtering to scalp spike detection was developed on
an independent project after the data on this program was col-
lected but, fortuitously, both scalp EEG and deep brain elec-
trical activity were recorded simultaneously on the same mag-
netic tape in the larger project. This made possible the
design of a digital filter based on deep spiking activity in a
human. The filter design derived from this data was used to
analyze the filter's performance as a detector of spike-corre-
lated events in the scalp EEGs of the two implanted patients
and in the scalp EEGs of age- and sex-matched normal controls.

The analysis of these tapes gave results that are highly
encouraging because of the clear-cut differences between the
number of detections in the patients versus controls and be-
tween the two sides of the head in the patient whose deep
spiking activity was unilateral. 1In the patient who exhibited
bilateral deep brain spiking activity, the digital filter de-
tector indicated approximately the same number of spike counts
on both sides of the head. Thus, a digital filter which was
designed using the EEG data from one patient gave consistent
results when applied to another patient. (It was not possible
to design a digital filter using the second patient's EEG re-
cordings because the scalp EEG activity was not recorded on
tape simultaneously with the deep electrical activity.)

Deep recording channels were available on magnetic tape
from both right and left brain hemispheres for patient P,.
Deep electrical spiking activity was exhibited only in left-
side recordings with the most prominent spiking recorded from
the left anterior septum (LAS). Therefore, the spikes in this
deep recording channel were used as triggers for computing
time-locked scalp EEG averages. Average potentials of similar
shape were obtained from the two bipolar left-side scalp leads
F7/T3 and T3/T5. Both symmetrical right-side leads (F8/T4 and
T4/T6) did not produce an average time-locked potential above
that obtained by using a random trigger. The average poten-
tial (shown in Figure 2) obtained from 200 time-locked scalp
responses in channel F7/T3 provided the basis for the digital
filter design used in this analysis of the scalp EEGs. The
actual shape of the digital filter is shown in Figure 3, which
represents the average time-locked potential of 1.5 seconds
duration following the spike trigger, with appropriate wave-
form smoothing to minimize EEG background effects. This digi-
tal filter (Figure 3) acted as the matching template in per-
forming an analysis of the ongoing surface EEG activity of the
symmetrical EEG channels available for the two patients and on
identical channels for the two sex- and age-matched controls.
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The results are summarized in Table 1 and are based on a de-
tection threshold at the output of the digital filter of two
times its RMS output.

TABLE 1. Number of Events in 20 Minutes which Meets 2/1
Detection Criterion?

Recording Site

F7/7T3 F8/T4
Subject Left-side EEG Right-side EEG

Patient P, with deep
left spiking only 216 148
Patient P; with deep B :
bilateral spiking 190 212
Normal Control C, 128 132
Normal Control C» 128 144

Art should be noted that in the three scalp EEG channels
in which one would expect a high incidence of spike-correlated
events to oeccur (see underlined values in above table), a mean
number of 206 detections was obtained with a standard devia-
tion of 11; whereas in the five scalp channels in which one
would expect a lower incidence of spike-correlated events, a
mean number of 136 detections wae obtained with a standard
deviation of eight.

DETECTION OF RECURRENT PATTERNS OF UNKNOWN WAVESHAPE

An alternate approach to the noninvasive detection problem
is required when the recurring transient pattern is of unknown
waveshape. Since averaging methods for visualizing a recur-
rent waveshape in noisy EEG require that the averaging process
be synchronized by the deep spike event (which can be detected
only by invasive methods), the waveshape of the recurrent
transient is frequently unknown. Under these conditions, the
methodology for detecting the presence of a recurrent complex
transient in scalp recorded brain electrical activity is based
on the application of deconvolution procedures as described
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A recurrent transient waveform in the EEG can be represen-
ted as follows:
n
(1) E(t) =L A X(t-1,) + N(t)

o) KTk

Alternately, (1) may be written as a convolution product:

n

(2) E(t) = X(t) * L A 0(t-1

) + N(t)
-0 k k

where * designates convolution, and

X(t) = intermittent pattern; i.e., waveshape
of recurrent transient

N(t) = EEG background activity

§(t-1,)

X Dirac delta function at Tk.

The deconvolution of the convolution factors in equation (2)
is accomplished in several steps. First, the Fourier trans-
form of (2) gives the algebraic product of the individual Fou-
rier transforms of the intermittent pattern and the set of
delta functions. This suggests the use of cepstral analysis
which involves computation of the logarithm of the Fourier
transform as a second step and, as a third step, computation
of the inverse Fourier transform of this result to produce a
function called the cepstrum. The properties of the cepstrum
will reveal the presence of a repetitive pattern in the EEG by
virtue of spikes which will appear in the cepstrum when two or
more recurrences of the pattern are embedded in the EEG epoch
analyzed.

I1f the waveform characteristics are of interest, then this
methodology can also be used to determine the shape of the
transient pattern. This is accomplished by smoothing the cep-
strum to eliminate the spikes, and then reversing all the
transformations used to produce the cepstrum. However, this
is a difficult computational problem and it is possible to
circumvent these procedures if one is not interested in ascer-
taining the shape of the pattern, but simply in detecting
whether a recurrent pattern is contained within the time epoch
analyzed. If at least two patterns are captured in the data
epoch, then analysis shows that the power spectral density
(PSD) will contain ripples which are attributable to the pre-
sence of the recurring pattern. The assumption underlying the
utility of this approach is that the background EEG, in the
absence of a repeated transient pattern, will possess a smooth
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FIGURE 4. EEG Resting.- eyes open, no stimulation.
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FIGURE &. EEG with 4/sec visual stimulation.

or unrippled PSD. Figures 4 and 5 demonstrate that this as-
sumption holds for the EEG data recorded under 'eyes open"
conditions from occipital leads during an experiment in which
transients were introduced into the background EEG by inter-
mittent visual stimulation. The figures show that the PSD for
the no-stimulus condition is smooth (Figure 4) while the PSD

12
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for the stimulus condition exhibits ripples (Figure 5) whose
peaks are separated by the reciprocal of the stimulus interval.

In summary, the above results demonstrate that PSD analysis
of sufficient frequency resolution to resolve ripples may pro-
vide a tool for evaluating the violent offender. More general-
ly, the analytical methods described in this manuscript provide
a basis for investigating the clinical implications of weak re-
current transients which are embedded in EEG background and
therefore usually not discernible by visual inspection of the
EEG time series.
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